89 research outputs found

    Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin

    Get PDF
    Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though php gene is highly transcribed in naturally synchronous plasmodia of Physarum. Unexpectedly, bi-dimensional agarose gel electrophoreses of DNA samples prepared at specific time points of S phase showed that replication of the locus actually begins at the onset of S phase but it proceeds through the first half of S phase, so that complete replication of php-containing DNA fragments occurs in late S phase. Origin mapping located replication initiation upstream php coding region. This proximity and rapid fork progression through the coding region result in an early replication of php gene. We demonstrated that afterwards an unusually low fork rate and unidirectional fork pausing prolong complete replication of php locus, and we excluded random replication timing. Importantly, we evidenced that the origin linked to php gene in plasmodium is not fired in amoebae when php expression dramatically reduced, further illustrating replication-transcription coupling in Physarum

    Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation

    Get PDF
    Cleavage of mutant huntingtin (HTT) is an essential process in Huntington's disease (HD), an inherited neurodegenerative disorder. Cleavage generates N-ter fragments that contain the polyQ stretch and whose nuclear toxicity is well established. However, the functional defects induced by cleavage of full-length HTT remain elusive. Moreover, the contribution of non-polyQ C-terminal fragments is unknown. Using time- and site-specific control of full-length HTT proteolysis, we show that specific cleavages are required to disrupt intramolecular interactions within HTT and to cause toxicity in cells and flies. Surprisingly, in addition to the canonical pathogenic N-ter fragments, the C-ter fragments generated, that do not contain the polyQ stretch, induced toxicity via dilation of the endoplasmic reticulum (ER) and increased ER stress. C-ter HTT bound to dynamin 1 and subsequently impaired its activity at ER membranes. Our findings support a role for HTT on dynamin 1 function and ER homoeostasis. Proteolysis-induced alteration of this function may be relevant to disease. Synopsis The development of a time and site-specifically controlled cleavage of the mutant huntingtin protein reveals a pathogenic mechanism induced by the non-polyQ-containing fragments that are generated upon proteolysis during disease progression. Huntingtin proteolysis generates N-ter fragments that contain the toxic polyQ stretch but also the corresponding C-ter fragments. N-ter to C-ter intramolecular interactions present in full-length huntingtin are abrogated by sequential cleavages. Whereas the N-ter polyQ fragments translocate into the nucleus, the non-polyQ C-ter huntingtin fragments remain in the cytoplasm and cause ER dilation, stress and cell death. C-ter huntingtin fragments bind and inactivate dynamin 1 at the ER thus causing ER dilation and toxicity. Site-specifically controlled cleavage of the mutant huntingtin protein reveals a pathogenic mechanism induced by non-polyQ-containing fragments that are generated upon proteolysis during disease progression.</p

    DNA Replication in Physarum

    No full text
    International audienceThe natural synchrony of the nuclear cycle within the plasmodium of the myxomycete Physarum polycephalum provides an opportunity to study, without the need for any cell treatment, the complex and transient patterns of replication intermediates generated during chromosomal replica-tion. In this review, we focus on the parameters of replication kinetics from the synthesis of Okazaki fragments to the chromosome-sized progeny molecules and summarize data suggesting that their appearance at some specific loci is precisely programmed and intimately linked to the transcriptional activity of the cell

    Mapping of a Physarum

    No full text
    • 

    corecore